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Abstract
We present a new, nonautonomous Lax pair for a lattice nonautomous modified
Korteweg–deVries equation and show that it can be consistently extended multi-
dimensionally, a property commonly referred to as being consistent around a
cube. This nonautonomous equation is reduced to a series of q-discrete Painlevé
equations, and Lax pairs for the reduced equations are found. A 2 × 2 Lax pair
is given for a qPIII with multiple parameters and, also, for versions of qPII and
qPV, all for the first time.

PACS number: 02.30.Ik

1. Introduction

Nonlinear evolution equations occur frequently in physical modelling and applied
mathematics. Nonlinear integrable lattices provide a natural discrete extension of classically
integrable systems. More recently, there has been great interest in nonlinear ordinary difference
equations. We consider reductions from lattice equations to ordinary difference equations
which constitute a natural link between the two classes of equations. Our main perspective
will lie in the construction of Lax pairs for difference equations.

Most studies [1–6] of reductions of lattice equations focus on equations in which all
parameters are independent of lattice variables. For example, the lattice modified Korteweg–
de Vries equation [2],

LMKdV: xl+1,m+1 = xl,m

(pxl+1,m − qxl,m+1)

(pxl,m+1 − qxl+1,m)
,
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contains lattice parameters p, q which are considered to be independent of the lattice variables
l, m. In [7], a new type of reduction from the lattice equations to ordinary difference equations
was introduced by starting with non-autonomous lattice equations. In this approach, the lattice
parameters p, q were considered to be functions of l, m, under the condition that the lattice
equation satisfied the singularity confinement property. Such non-autonomous forms of well-
known lattice equations were then shown to reduce to q-discrete Painlevé equations, including
qPII, qPIII and qPV.

Such q-discrete Painlevé equations are of fundamental interest in the theory of integrable
systems and random matrix theory. We note that the full generic form of qPIII was first
obtained in [8]. Its natural generalization is a q-discrete sixth Painlevé equation (qPVI) first
obtained in [9]. The integrability of such equations lies in the fact that they can be solved
through an associated linear problem called a Lax pair. For qPIII the Lax pair was obtained
in [10], with a notable feature that the linear problem is a matrix problem involving matrices
of size 4 × 4. On the other hand, the Lax pairs of lattice equations, such as the LMKdV
[1, 2], and many discrete Painlevé equations, such as qPVI are typically matrix problems of
size 2 × 2. In [15], a 2 × 2 Lax pair was given for a special case of qPIII.

In this paper, we present two types of results. First, we show that an extension of the
reduction method given in [7] is possible and, by using the extension, deduce a sequence of
discrete Painlevé equations as reductions of lattice equations. Second, we give a Lax pair of
the non-autonomous LMKdV and show that it gives rise to 2 × 2 matrix Lax pairs under the
reductions to q-Painlevé equations. In obtaining the latter, a key observation was needed that
arises from the multi-dimensional embedding of lattice equations in a self-consistent way in
three directions. The resulting theory [11–14] is often referred to as ‘consistency around a
cube’.

This paper is organized as follows. In section 2, we recall the Lax pair of LMKdV and
generalize it to provide a non-autonomous Lax pair for the non-autonomous version of LMKdV.
We also show that this Lax pair and the generalized LMKdV form a multi-dimensional system
that satisfies the self-consistency property. In section 3, we consider the reductions of the non-
autonomous LMKdV to ordinary difference equations and provide extensions of previously
considered reductions. In section 4, we show that 2 × 2 Lax pairs for the reductions can be
found by applying the idea of self-consistency and reductions to the Lax pair of the LMKdV.
We end this paper with a conclusion where we also point out some open problems.

2. Lax pair and self-consistency of the non-autonomous LMKdV

While a linear problem, or Lax pair, associated with the LMKdV has been known for a long
time [1, 2], it appears that linear problems associated with the non-autonomous version of
the LMKdV have not been written down before. We provide an explicit Lax pair for the
non-autonomous version of the LMKdV in subsection 2.1.

Furthermore, while the theory of multi-dimensional extensions of lattice equations has
been explored fairly widely, the theory has not been applied explicitly to non-autonomous
lattice equations. We provide such an application to the non-autonomous LMKdV in
subsection 2.2.

2.1. Lax pair of the non-autonomous LMKdV

A Lax pair for the LMKdV is a linear problem of the form

v(l + 1,m) = L(l,m)v(l,m), v(l,m + 1) = M(l,m)v(l,m), (2.1)
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whose compatibility condition, namely, L(l,m + 1)M(l,m) = M(l + 1,m)L(l,m), is the
LMKdV.

Hereafter we adopt the notation v = v(l + 1,m) and v̂ = v(l,m + 1). (We have used l
in place of the more traditional n here because it is notationally more appropriate that the L
matrix should create a shift in l and M in m. Later, in section 3, we will see that a third Lax
matrix, N, arises whose associated shifts will be in n.) Now set

L =
(

x/x −λ/(νx)

−λx/ν 1

)
, (2.2a)

M =
(

x̂/x −µ/(νx)

−µx̂/ν 1

)
, (2.2b)

where ν is a spectral variable, µ is a function of m alone, and λ is a function of l alone.
Compatibility occurs when L̂M = ML. In this equation, it is straightforward to check

that the diagonal entries yield identities and the off-diagonal entries each contain the lattice
mKdV equation in the following way. The top-right entry yields

µx̂

x̂x
+

λ

x̂
= λx̂

xx
+

µ

x
⇒ x̂(µx − λx̂) = x(µx̂ − λx).

Similarly, the bottom left entry yields the same equation. Thus we arrive at the following form
of the LMKdV equation,

x̂ = x
x − rx̂

x̂ − rx
, (2.3)

where we have introduced

r(l,m) = µ(m)

λ(l)
. (2.4)

This form of the LMKdV equation is identical to the one used in [7], except for a factor of
(−1) which is inconsequential. Indeed, we can achieve the equation used there exactly if
we premultiply each of L and M by

( 1
0

0
−1

)
. We use the slightly different form here simply

because it allows for a more symmetric Lax pair. In [7] it is noted that r must separate as in
(2.4) because it has to satisfy

r̂r = r̂r (2.5)

for the singularity confinement property to be satisfied. We note that integrability conditions
for lattice equations have also been studied recently in [22].

2.2. Consistency around a cube

In this subsection, we show that the Lax pair, (2.2), given in the previous subsection, is
multi-dimensionally consistent with the lattice equation LMKdV.

In this point of view, the lattice variables l, m provide a two-dimensional slice of a three-
dimensional space in which the third direction, coordinatized by n say, can be thought of as
providing the spectral direction for the Lax pair. The shifts l �→ l + 1,m �→ m + 1, n �→ n + 1
describe a fundamental cube in this multi-dimensional space. The term ‘consistent around a
cube’ arises from the fact that the iteration of the map on any face of the fundamental cube
provides a corner value that is the same as that provided by iteration on an intersecting face.
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Define x̃ = x(l,m, n + 1), such that x̃ = u/t , where u and t are the components of the
eigenfunction v(l,m, n), i.e.,

v =
(

t

u

)
where v satisfies the linear system (2.1).

Since v = Lv, so

x̃ = u/t

= u − λxt/ν

xt/x − λu/(νx)

x̃ = x
x̃ − ρx

x − ρx̃
(2.6)

where we have allowed ν to depend on n and replaced λ/ν by ρ(l, n). Since M takes on
the same form as L, we can clearly find an equivalent expression in the m and n directions.
And, because (2.6) is the LMKdV equation again, we conclude that the Lax pair is multi-
dimensionally consistent with the LMKdV equation.

Essentially we have done the reverse of the usual operation. Ordinarily one begins
with a system that is consistent around a cube and then constructs its Lax pair (see [14] or
[11, 12]). However, here we began with the Lax pair and showed that it is multi-dimensionally
consistent with the LMKdV equation.

3. Reductions to ordinary difference equations

In this section, we consider reductions from the partial difference equation (2.3) to a sequence
of ordinary difference equations. These include qPII, a three-parameter version of qPIII, a
special case of qPV, and, moreover, some higher-order difference equations. We present the
results in a series of subsections.

Let x̂ = f (x) where x represents x and its iterates, x, x, . . . . Thus, (2.3) becomes

f (x) = x
x − rf (x)

f (x) − rx
. (3.1)

For f (x) to be acceptable, it must produce the same reduced equation when we begin with the
mKdV equation iterated up once in m. That is

ˆ̂
x = x̂

x̂ − r̂ ˆ̂x
ˆ̂x − r̂ x̂

(3.2)

must lead to the same reduction, with possible conditions placed on r. We note that x̂ = f (x)

so ˆ̂x = f (x̂) = f (f (x)) and so (3.2) is equivalent to

f (f (x)) = f (x)
f (x) − r̂f (f (x))

f (f (x)) − r̂f (x)
. (3.3)

We will now consider some specific possible cases of f (x).

3.1. f (x) = xα

The first reduction we consider is f (x) = xα in (3.1) so that

x
α = x

x1−α − r

1 − rx1−α
(3.4)
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and we use the same f (x) in (3.2) to get

x
α = x

[
xα(1−α) − r̂

1 − r̂xα(1−α)

]1/α

. (3.5)

The two expressions for x
α
, (3.4) and (3.5), agree if α = 1 but this leads to a linear equation.

Another solution is α = −1 and r̂ = r . The latter condition on r dictates through (2.5) that
r = βγ l , where both β and γ are constant, so that the final form of the reduced equation is

xx = βγ lx2 − 1

βγ l − x2 (3.6)

which is a special case of a q-discrete Painlevé III equation (qPIII) found in [8].
Equation (3.6) was already obtained in [7] as a reduction of the lattice sine-Gordon

equation (LSG). The advantage of the reduction presented above is that it comes with a Lax
pair (see section 4.2). As a point of interest we mention that the LMKdV can be transformed
to the LSG by using x̂ → 1/x̂.

3.2. f (x) = x
α

Now consider f (x) = x
α

the same analysis as above shows that, again, α = 1 or α = −1
will lead to valid reductions. When α = 1, we must set log r = al + b + c(−1)l and, after
introducing y = x/x, we are left with

yy = 1 − ry

y(y − r)
. (3.7)

The same equation as (3.7) was found in [7] where the equation was identified as either qPII

or qPIII, depending on whether c = 0.
Now take the case when α = −1, this time (3.1) becomes

xx = xxxx

xx
= rxx − 1

r − xx

whereupon setting y = xx we find

yy = y
ry − 1

r − y
. (3.8)

To find the required form of the parameter functions we must compare this to (3.2) with the
same y substituted

yy = y
1 − r̂y

y − r̂
.

Clearly, the equivalence between these two mappings is satisfied by taking r as for the case
when α = +1. Equation (3.8) is actually equivalent to (3.7) and was also derived in [7] but
from the lattice sine-Gordon equation rather than the l mKdV.

3.3. f (x) = x

We let f = x and, on substituting w = x/x, we have

ww = 1 − rw

w − r
. (3.9)

Here log r = al + b + cξ l + dξ 2l , a, . . . , d = constants and ξ 3 = 1. This equation was shown
to be a qPII when c = d = 0 [19] or a qPV in the general case [20].
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3.4. f (x) = 1/x

Specifying f = 1/x leads to what appears to be an irreducible, fourth order, integrable
difference equation, namely

xx = xx − r

1 − rxx
(3.10)

where again log r = al + b + cj l + dj 2l and j 3 = 1.

3.5. f (x) = x

The reductions of orders higher than third all lead to equations that are not reducible to a
second-order form. The next reduction to consider is f = xl+4 which becomes

yyyyy = 1 − ryyy

yyy − r
(3.11)

with y = x/x, and log r = a(−1)l + b + cl + d cos
(

lπ
2

)
+ e sin

(
lπ
2

)
, a, . . . , e = constants.

3.6. f (x) = 1/x

Using f = 1/xl+4 allows the reduction of the lmKdV to

yyy = yy
ryy − y

ry − yy
(3.12)

where r is the same as in the previous example but y = xx.
Arbitrarily high-order equations can be generated in this manner.

4. Lax pairs for the reduced equations

In this section, we deduce Lax pairs for the q-discrete Painlevé equations derived in the previous
section by applying the observations obtained from the multi-dimensional self-consistency of
the LMKdV system and its Lax pair. Since the reductions leading to qPII, qPIII and qPV differ,
we give the details of each separately in three subsections.

So far the linear system is given by (2.1) but now we wish to include the third direction,
n, that we introduced in section 2.2. The variable n will come into L via ν which plays the
role of the spectral variable, i.e., we allow ν = ν(n). This gives rise to the reduced equations
through compatibility between the l and n directions. We write L

(
l, m, ν(n)

) = L(l,m, n),
M

(
l, m, ν(n)

) = M(l,m, n) and introduce a matrix N
(
l, m, ν(n)

) = N(l,m, n) such that

v(l + 1,m, n) = L(l,m, ν(n))v(l,m, n) (4.1a)

v(l,m, n + 1) = N(l,m, ν(n))v(l,m, n), (4.1b)

where L in the first equation is the same as in equation (2.2a). We indicate a shift in n by
a(l,m, ν(n + 1)) =: a(l,m, n + 1) =: ã. Now the compatibility condition of the above two
equations is L̃N = NL.

We label the components of v, as in section 2.2, by

v =
(

t

u

)
(4.2)

and let x̃ = u/t . We are now in a position to find the form of N through the reduction.
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4.1. Lax pair for qPII

First consider the reduction x̂ = x which reduces the LMKdV equation to qPII. Recall that
v = Lv and v̂ = Mv so on the one hand,

v̂˜ =
(

t̂˜̂
u˜
)

= t̂˜
(

1
x̂

)
= t̂˜

(
1
x

)
and on the other hand,

v˜ = t˜
(

1
x

)
= (t˜/t̂˜)v̂˜ .

But v̂˜ = (N̂˜ )−1Mv and v˜ = (N˜ )−1LLv. Thus

t˜N˜ = LLM−1 t̂˜N̂˜ . (4.3)

We now use (4.3) as a guide and try a general N that has the same form as LLM−1, where by
the same form we mean that it contains the same powers of ν. From equations (2.2), we find

LLM−1 = 1

ν2 − µ2

 ν2 + λλx

x
− µλx

x
− µλx

x
ν
(

µ

x
− λ x

xx
− λ

x

)
+ 1

ν
µλλ/x

ν
(
µx − λx − λxx

x

)
+ 1

ν
µλλx ν2 + λλx

x
− µλx

x
− µλx

x

 .

Since the prefactor cancels in the compatibility condition (4.5), we take N to be

N =
(

ν2a2 + a0 νb1 + b0/ν

νc1 + c0/ν ν2d2 + d0

)
(4.4)

where the coefficients ai, bi, ci and di are functions of l only. Note that ν is the spectral
parameter and needs to be related to the spectral variable n. We will assume ν(n) = qn and
continue to use ν as the spectral variable in L and N. However, there is an important observation
to be made after reduction: x should be independent of ν. (This is the property that all discrete
Painlevé equations possess: their solutions are independent of the spectral variable that occurs
in their respective Lax pairs.) Recall that shifts in n are denoted by ˜ . Hence we take x̃ = x

in the following.
Now the coefficients of the various powers of ν in N are determined by the compatibility

condition

L̃N = NL (4.5)

which is the compatibility condition of the system (4.1). Going through the calculations in
detail would be somewhat tedious so only an outline will be given here. The compatibility
condition gives a total of ten equations, three in each of the diagonal entries and two in the
off-diagonal entries. The equations in the diagonal entries at order ν2 and ν−2 are solved in a
straightforward manner, yielding

a2 = constant

d2 = constant
(4.6)

b0 = γ

xσ

c0 = γ x

σ

where γ is a constant and σ = ql . The remaining six equations read as follows:
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a0 − a0 = λ(xb1 − c1/qx) (4.7a)

d0 − d0 = λ(c1/x − xb1/q) (4.7b)

b1x − b1x = λ(a2 − d2/q) (4.7c)

c1/x − c1/x = λ(d2 − a2/q) (4.7d)

a0 − d0/q = γ

λσ

(
x

qx
− x

x

)
(4.7e)

d0 − a0/q = γ

λσ

(
x

qx
− x

x

)
. (4.7f )

To solve these, use (4.7c) to replace b1x in (4.7a), and the resulting expression to replace a0

in (4.7e). Now do the same with (4.7d) and (4.7b) in (4.7f ), then solve these two equations
for a0 and d0 to find

a0 = − γ x

λσx
− λb1x − λ2a2 (4.8a)

d0 = − γ x

λσx
− λc1

x − λ2d2
. (4.8b)

One can now use (4.8a) and (4.8b) in equations (4.7a) and (4.7b), replace b1 and c1 via (4.7c)
and (4.7d), then solve the remainder for b1 and c1. All this reduces to

a0 = a2λλx

x
− γ x

σ

(
1

λx
+

1

λx

)
(4.9a)

d0 = d2λλx

x
− γ

σx

(
x

λ
+

x

λ

)
(4.9b)

b1 = γ

λλσx
− a2

x

(
λ + λ

x

x

)
(4.9c)

c1 = γ x

λλσ
− d2x

(
λ + λ

x

x

)
. (4.9d)

Finally, these calculated values should be substituted back into equations (4.7a)–(4.7f ).
On doing this and making the substitution y = x/x, we find that one of the two following
forms of qPII arises in each case

yy = 1

y

γ λy − a2λλλ
2
qσ

qγ λ − d2λ2λλσy
(4.10)

yy = 1

y

γ λqy − a2λ
2λλσ

γλ − d2λλλ
2
qσy

. (4.11)

Equations (4.10) and (4.11) can be reconciled by setting λ = AB(−1)l ql/2, with constants
A and B, which gives the same form of qPII that was given earlier (and found in [7]) by a
reduction from the LMKdV equation. Hence we have calculated a Lax pair for qPII, which
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explicitly takes the form

v(l + 1, n) = L(l, ν(n))v(l, n) (4.12a)

v(l, n + 1) = N(l, ν(n))v(l, n) (4.12b)

where

L =
(

x
x

− λ
νx−λx

ν
1

)
, (4.13)

N =
a2ν

2 + a2λλx

x
− γ x

σ

(
1
λx

+ 1
λx

)
ν
[

γ

λλσx
− a2

x

(
λ + λx

x

)]
+ γ

νσx

ν
[

γ x

λλσ
− d2x

(
λ + λx

x

)]
+ γ x

νσ
d2ν

2 + d2λλx
x

− γ

σx

(
x

λ
+ x

λ

)
 . (4.14)

4.2. Lax pair for qPIII

The next reduction to be considered is that taking LMKdV to qPIII, i.e., x̂ = 1/x. The
reciprocal in the latter reduction introduces a difference in the method used to find the
corresponding Lax pair. We now have

v̂˜ = t̂˜
(

1
x̂

)
= t̂˜

(
1

1/x̄

)
= t̂˜/x̄

(
x̄

1

)
and

v = t˜
(

1
x

)
= x̄t˜̂

t˜
(

0 1
1 0

)
v̂˜ .

So this time the suggested form of N is the same as
( 0

1
1
0

)
LM−1 and, as such, we choose

N =
(

a/ν b0 + b2/ν
2

c0 + c2/ν
2 d/ν

)
. (4.15)

In this case the compatibility condition contains eight equations that are solved in a similar
way to before, and these lead to

a = −λβxx − αx

λσx
(4.16a)

b0 = βx (4.16b)

b2 = α

σx
(4.16c)

c0 = γ

x
(4.16d)

c2 = αx

σ
(4.16e)

d = −λγ

xx
− αx

λσx
(4.16f )

where α, β and γ are all constants, λ = δq−l where δ = constant and σ = ql .
The final form of the qPIII equation obtained from the compatibility conditions is

xx = µ1q
lx2 + µ2

µ3ql + x2 (4.17)
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which is a non-autonomous equation with three free parameters µi . The Lax pair is of the
form

v(l + 1, n) = L(l, ν(n))v(l, n) (4.18a)

v(l, n + 1) = N(l, ν(n))v(l, n) (4.18b)

where L as before is given by

L =
(

x
x

− λ
νx

−λx
ν

1

)
, (4.19)

and

N =
(− 1

ν

(
λβxx + αx

λσx

)
βx + α

ν2σx

γ

x
+ αx

ν2σ
− 1

ν

(
λγ

xx
+ αx

λσx

)) . (4.20)

4.3. Lax pair for qPV

Lastly, a Lax pair for qPV (see equation (3.9)) is presented. Following the previous analysis,

we begin with N of the same form as LLLM−1 or

N =
(

a1ν
2 + a0 + a2/ν

2 b1ν + b0/ν

c1ν + c0/ν d1ν
2 + d0 + d2/ν

2

)
. (4.21)

After similar methods as we used earlier, we arrive at the following, where log(T2) =
A + B(−1)l is a function of period two, and σ = ql as before.

a0 = T2x

σx

(
x

λλx
+

xx

λλxx
+

1

λλ

)
+ a1

(
λλ

x

x
+ λλ

xx

xx
+ λλ

x

x

)
a1 = constant
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σ
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+
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+
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)
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d1 = constant
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σ
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+
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+
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)

c0 = −T2x
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x

λ
+

x

λ
+

xx

λx

)
− d1λλλx

c1 = − T2x

λλλσ
− d1x

(
λ

x

x
+ λ

xx

xx
+ λ

x

x

)
.
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We also find that log λ = α + βξ l + γ ξ 2l − ql/3, ξ 3 = 1 and the form of the resulting
evolution equation is

yy = qT2λy + a1λ
2λλλν

T2λ + qd1λλλλνy

(4.22)

where we have made the substitution y = x/x.
In this case, the Lax pair takes the form

v(l + 1, n) = L(l, ν(n))v(l, n) (4.23a)

v(l, n + 1) = N(l, ν(n))v(l, n) (4.23b)

where L as before is given by

L =
(

x
x

− λ
νx

−λx
ν

1

)
, (4.24)

and we write N as

N = N2ν
2 + N1ν + N0 +

N−1

ν
+

N−2

ν2
(4.25)

where

N2 =
(

a1 0

0 d1

)
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)
0


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N−1 =

 0 − T2x
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1
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+ x

λxx
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λλλ

x

− T2x

σx
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x

λ
+ x

λ
+ xx
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) − d1λλλx 0


and

N−2 =
(

T2
σ

0

0 T2
σ

)
.

5. Conclusion

In this paper, we have presented a new Lax pair for a lattice, non-autonomous, modified
Korteweg–de Vries equation and shown that it forms a consistent multi-dimensional system
when considered together with its Lax pair. We also gave reductions of this non-autonomous
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LMKdV to q-difference Painlevé equations and found the Lax pairs corresponding to those
reduced equations. A notable feature of these results is that they provide 2 × 2 Lax pairs for
the first time for these versions of qPII, qPIII and qPV.

It is worth noting that only one simple form of reduction was investigated here. It remains
to be seen whether other types of reductions, that is other forms of f (x) in (3.1), can be used
with the LMKdV or other lattice equations.

We note that, so far, there appears not to be a direct method for reducing the lattice Lax
pair L,M to the ordinary difference equation’s Lax pair L,N . There is a jump in our process
of finding N after reduction. The main obstacle is that it is not known whether equations of
the form (4.3) can be solved to find N directly. Instead, we have chosen to use the form of
the equation to motivate the dependence of N on the spectral parameter ν and then used the
compatibility conditions to deduce the entries of N.

A feature of the Lax pairs we deduce is that they share the same L. We note here that the
calculation of a series of Lax pairs is also possible for other reductions, including the higher-
order difference equations found in section 2. These would also share the same L matrix.
This is analogous to the case of integrable differential-equation hierarchies and suggests the
existence of a hierarchy for each of the reductions we have studied here. An open problem is to
find reductions of lattice equations to infinite hierarchies of q-difference equations along with
their Lax pairs. It would be eventually interesting to find reductions from lattice equations to
the q-Garnier hierarchy constructed by Sakai in [23].
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